
Analysis and Exercises for Engaging Beginners in

Online CTF Competitions for Security Education

Tanner J. Burns1, Samuel C. Rios1, Thomas K. Jordan1, Qijun Gu1, Trevor Underwood2

1Department of Computer Science, Texas State University, San Marcos, TX 78666

Email: {tjb102,scr3,tkj15,qijun}@txstate.edu
2Netspend Corporation, Austin, TX 78768

Email: tunderwood@netspend.com

Abstract

Cybersecurity competitions are getting more attention as

a prominent approach of computer security education in

the past years. It is vital to look into better ways to en-

gage beginners in the competitions to improve computer

security education. This work collected and analyzed the

solutions of about 3600 Capture The Flag (CTF) chal-

lenges from 160 security competitions in the past three

years. This work identified the security issues that are

the most concerning to industry and academia and enu-

merated the security tools and techniques that are used

the most by players. Based on the analysis, this work

presented a set of computer security exercises as a down-

loadable tool package for beginners to try out in an intro-

ductory computer security course.

1 Introduction

Cybersecurity competitions in recent years have attracted

many students and professionals interested or working in

the areas of computer security. Throughout this research,

we collected the data of past competitions from 2011 to

2016 from the archives of CTFtime.org [1] to study the

main characteristics of the competitions. These competi-

tions were used for education, training, and recruitment.

In universities, some of the competitions were incorpo-

rated into the computer security education curriculum to

enhance the interest in a cybersecurity career among the

students with hands-on gamificated exercises and to pro-

duce the next generation of cybersecurity professionals.

A great deal of effort has gone into making the compe-

titions better. However, it is still vital to look into better

ways to engage beginners in the competitions [12,15,18].

Beginners are often dissuaded from the competitions

due to the frustrating experiences of their first attempts.

Meanwhile, it is in the student’s best interest to contin-

uously participate in the competitions so that they can

accumulate security knowledge and skills. To address

these issues and help beginners, this study intends to

identify the essential skills and provide suitable training

resources for beginners to study and practice by them-

selves.

As shown in Figure 1, online competitions (more than

60%) have been the dominant way to host the competi-

tions. Among the online competitions, about 94% are of

jeopardy style, namely Capture The Flag (CTF), where

players use offensive techniques to solve security chal-

lenges. Compared with other forms of competitions, on-

line CTF competitions are more accessible for beginners.

Accordingly, this work provides a training platform and a

set of exercises that mimic the online CTF competitions

for beginners to gain initial similar experiences.

The main question this work tries to answer is what

security knowledge and skills should be included in the

exercises for beginners. Rather than designing the exer-

cises based on our past security teaching experiences, we

chose to study the past CTF competitions to identify the

security issues that are the most concerning to industry

and academia and enumerate the security tools and tech-

niques that are used the most by players. Then, based on

the analysis, we design our exercises. This data-based

and analysis-based approach will better reflect the truly

needed security skills for beginners to grow their inter-

ests and skills in computer security.

To understand the kinds of skills and techniques

to solve these security challenges, we collected and

analyzed the solutions of about 3600 security chal-

lenges from 160 security competitions in the past three

years. Many players voluntarily posted their solutions as

“writeups” that provide step-by-step solutions and their

thought processes. The writeups are excellent sources

for beginners to study and follow. Beginners can find the

writeups on Github [2], CTFtime [1], players’ personal

blogs or websites, and so on. After comparing these

sources, we chose to collect writeups from Github [2],

where more writeups were posted and better organized.

The contribution of our work has two folds. First, we

showed the main characteristics of the past security chal-

 0

 20

 40

 60

 80

 100

 2010 2011 2012 2013 2014 2015 2016 2017

C
o
m

p
et

it
io

n
 L

o
ca

ti
o
n
 (

%
)

Year

Online
On-site

Figure 1: Competition Locations

lenges, summarized the main security issues concerned

in the security community, and highlighted the main

knowledge and skills used in the competitions. Second,

we provided a training platform based on PicoCTF [6]

and deployed a set of exercises based on the analysis of

the past security challenges. The platform and exercises

are centered around beginners and enable beginners to

study and practice by themselves.

The rest of the paper has the following sections. Sec-

tion 2 summarizes the related works in the literature.

Section 3 discusses the choice and setup of the CTF plat-

form. Section 4 presents the analysis of the past CTF

challenges and the exercises included in our platform.

Section 5 shows the results of using the platform and the

exercises in an introductory computer security course.

The paper concludes in Section 6.

2 Related Works

In recent years, competitive security games, especially

Capture-The-Flag games, have emerged as a new educa-

tional approach that gamificates computer security edu-

cation to attract and engage more students into computer

security areas [9, 11, 13, 14, 16, 17]. Many CTF games

are online and easier for students to participate, practice

and learn on specific security subjects. To help beginners

to participate, educators and researchers have invested a

great amount of effort on developing CTF tools and re-

designing CTF-based curricula to make the CTF games

more accessible and useful to students.

Online CTF competitions are hosted on a variety of

platforms. Several hosts of the competitions have pub-

lished their CTF platforms [3–7]. We adopted PicoCTF

[6, 10] as our platform to deploy the CTF exercises. The

platform has well designed features including user man-

agement, web interface, problems setup, problems grad-

ing, statistics of players and teams, and so on. It is also

well documented and easy for us to deploy exercises. It

later was improved [8] to include automatic flag genera-

tion to distinguish participating teams. Similar to the ap-

proach in [11], we revised the PicoCTF platform so that

students can download the platform as an offline virtual

machine to practice by themselves.

Educators also tried to make CTFs more suitable for

beginners. In [12], six factors were analyzed to find the

reasons that security competitions were very hard for be-

ginners. It was found that most competition challenges

were not designed for beginners in the first place, and

thus led to beginners quickly becoming stuck and giv-

ing up. In [15], educators designed a set of small-scoped

and hands-on exercises and in-class discussions to gen-

tly introduce beginners to security competitions, rather

than simply exposing them to hard problems that they

cannot solve. In [18], educators divided security prob-

lems into several levels accompanied with a few hints at

each level as well as a recommended solution. Beginners

could opt to take the hints and the solutions. We notice

that these works did not pay sufficient attention to what

exercises are suitable and important to beginners. We did

a comprehensive analysis on the past CTF challenges to

help beginners understand the characteristics of the CTF

challenges and the prominent skills and areas they need

to learn in order to participate in the competitions.

3 Setup of Platform and Exercises

3.1 Platform Choices

We provided all exercises inside a standalone Virtual

Box (VBox) platform so that beginners can download the

platform to practice on their own computers. Many be-

ginners do not have experiences with online CTF com-

petitions at all. They do not know how to read questions

and hints of security challenges, how to manually or pro-

grammably interact with the services of the challenges,

how to submit flags, how to check their progresses, and

how to form teams online. Although these obstacles ap-

pear trivial to experienced players, we found it is neces-

sary to provide real competition experiences to beginners

so that they can better focus on security challenges.

We built the platform based on the PicoCTF platform

[6]. For beginners to practice on their own computers,

we package the CTF management and the exercises in-

side one CTF platform. There are a few alternative open

source CTF platforms, such as OpenCTF [5], CTFd [3],

FbCTF [4], TinyCTF [7] and so on. From the perspec-

tives of beginners, all of the platforms we studied have

similar features, for example, user management, web in-

terface, problems setup, problems grading, statistics of

players and teams, and so on. Although beginners will

have similar experiences practicing on these platforms,

the process of deployment (i.e. installing these platforms

and setting up exercises) varies greatly.

Table 1: Comparison of CTF Platforms

Installation Language Documentation

PicoCTF Vagrant X Python X Good X

OpenCTF Docker X Python X Simple

CTFd Native Python X Simple

FbCTF Vagrant X PHP Good X

TinyCTF Native Python X Simple

To choose a proper platform, we compared three fac-

tors regarding the deployment and development of these

platforms as shown in Table 1. The first factor is how

a platform is installed and setup. The native approach

is to directly install a CTF platform as a software in a

computer. It usually requires extensive technical skills

to install and configure, and thus is challenging to be-

ginners. It is also risky because the host machine runs

a CTF platform with exploitable services. Vagrant and

Docker are the two latest technologies that are used to

install a CTF platform inside a virtual machine or a soft-

ware container. They add a protection layer that sep-

arates the CTF platform from the host machine. They

are also easy for beginners to install by themselves. The

second factor is what programming language is used by

the CTF web application. A CTF platform runs a web

application for participants to interact with the system.

The web application manages users, security challenges,

grading, statistics and so on. Among the platforms we

studied, Python and PHP were the two web program-

ming languages utilized. Python-based web applications

use the Flask framework, which is a lightweight Python

web framework and easy for us to manage, modify and

extend our own features into the CTF platform. The third

factor is how well a platform is documented. We looked

for two sets of documentations. One is the installation

instruction, which is easily accessible for all of the plat-

forms. The other is the guide for adding new security

challenges and customizing or tweaking features. Not all

platforms documented this aspect well. Some platforms

simply ask developers to follow the example challenges

to figure out how to add their own challenges.

After considering these three factors, we chose Pic-

oCTF as the base platform. But, we did not want begin-

ners to run Vagrant to setup their own PicoCTF. We built

a VBox machine based on PicoCTF that beginners can

download to run in their own computers. So, beginners

do not need to tackle occasional technical issues of using

Vagrant and can quickly run the VBox to practice.

3.2 Exercise Categories

Most CTF competitions divided their security chal-

lenges into different categories. Similar challenges were

grouped in the same category. Players often formed

teams that could quickly divide the workload among

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

cr
y
p
to

w
eb

re
v
er

se

fo
re

n
si

c

p
w

n

m
is

c

ex
p
lo

it

st
eg

an
o

p
p
c

tr
iv

ia

re
co

n

n
et

w
o
rk

b
in

ar
y

o
th

er
sC
o
u
n
t

o
f

C
at

eg
o
ry

 N
am

es

Category Names

Figure 2: Histogram of Category Names

team members based on the problem categories in com-

petitions. Most competitions have 5 to 7 categories and

most categories have 4 to 5 challenges per category. We

wanted beginners to initially focus on and obtain skills

from a selected set of categories. We analyzed the 909

category names used in the 160 competitions and iden-

tified 77 unique category names in these competitions.

We concluded it was best to provide exercises in six cat-

egories: “crypto”, “web”, “reverse”, “forensic”, “pwn”

and “misc”

Figure 2 shows the histogram of the category names.

We can see that the category names can be divided into

three groups according to their counts. The first group

includes six category names that we use for our ex-

ercises. They represent the major categories of secu-

rity challenges in CTF competitions. The second group

includes “exploit”, “stegano”, “ppc”, “trivia”, “recon”,

“network” and “binary”. The category names of the sec-

ond group were often used as substitutions of the first

group, or were used to make finer categories on some

specific topics. Often the challenges of the second cat-

egory group overlap with the first category group. For

example, the “exploit” challenges often belong to either

“pwn” or “web” in the first group, and the “binary” chal-

lenges often belong to either “reverse” or “pwn”. The re-

maining sixty-four category names form the third group.

They only appeared in very few competitions, but can be

classified to the categories of the first or second groups.

3.3 Exercise Difficulty Levels

A CTF competition is usually made of security chal-

lenges at different difficulty levels. Although the diffi-

culty levels of different CTF competitions vary greatly,

we defined three levels for beginners as seen below. We

studied the solutions of the past security challenges and

reclassified them accordingly. Table 2 shows the num-

bers of the security challenges of each category at each

difficulty level of the past CTF competitions.

1. Easy: A challenge can be solved with one or

two tricks and tools. A beginner can often solve

the challenge by themselves right after reading the

writeups.

2. Medium: A challenge can be solved with three or

more tricks and tools. After reading the writeups, a

beginner can solve the challenge with extra efforts,

such as reading additional documents.

3. Hard: A challenge can be solved with in-depth

tricks and sophisticated tools. A beginner can

hardly understand the writeups and cannot solve the

challenge even after reading the writeups.

We can see that the “misc” category has significant

fewer challenges than the other categories in security

competitions, because the “misc” challenges are often

used to test the general programming, math and problem-

solving abilities of the players. For the five security cate-

gories, “crypto”, “web” and “forensic” appear to be eas-

ier than “reverse” and “pwn”. The hard challenges are

less than a quarter of the total problems in the “crypto”,

“web” and “forensic” categories, while they are more

than 40% in the “reverse” and “pwn” categories. Most

challenges of the “reverse” and “pwn” categories require

the skills to disassemble a binary executable, analyze the

components and workflows inside the executable, and

then reconstruct a higher level abstraction of the exe-

cutable. The “pwn” category is even harder than “re-

verse” in that it requires the skills to identity a flaw and

exploit the flaw in the remote service after reverse engi-

neering binary executable. These skills usually require

beginners to take more training to master.

In total, three quarters of the security challenges were

easy and medium ones. Our exercises were chosen from

the easy and the medium security challenges. We did

not include hard challenges in our exercises. We think,

by practicing on these selected exercises, beginners can

develop the essential skills to solve a majority of easy and

medium challenges in competitions to gain confidence

and successful experiences. Once they have established

their own expertise, they can develop in-depth skills for

those hard challenges in future.

4 Exercises

We have collected a large set of the past security chal-

lenges. Based on our analysis of these challenges, we se-

lected a limited set of challenges that represent the most

concerned security issues in the competitions. We think

these challenges also reflect the most concerned security

issues in industry and academia. We created the exer-

cises based on the selected challenges. They help be-

ginners build their security knowledge and skills. In this

Table 2: Difficulty Levels

Category Easy Medium Hard

crypto 192 (48%) 129 (32%) 83 (21%)

web 152 (41%) 150 (40%) 70 (19%)

reverse 77 (22%) 131 (38%) 136 (40%)

forensic 263 (50%) 186 (35%) 79 (15%)

pwn 66 (19%) 138 (39%) 148 (42%)

misc 96 (48%) 67 (34%) 35 (18%)

total 846 (38%) 801 (36%) 551 (25%)

section, we describe the analysis of these challenges and

the chosen exercises in the six categories.

4.1 Coding

Coding is one of the fundamental skills required to solve

most security challenges. We provided a few exercises in

the “misc” categories, dedicated for training beginners

on necessary coding skills. Many security challenges

provide a few programs in source code or binary. Play-

ers need to figure out clues and flaws in the programs to

solve the challenges. In addition, players need to make

programs to process data and interact with flawed ser-

vices. All these activities need players to be proficient

in coding. In particular, we identified several must-have

coding skills for beginners that are focused on security-

related data processing operations. We included these

skills in our coding exercises to improve the beginners’

proficiency and efficiency on data processing.

The first coding skill is number and string conver-

sion. Most security-related data (text and numbers) is

represented as ASCII characters, hexadecimal numbers,

Base64 strings and so on. We notice that beginners

often spent unreasonable long time to use and process

these data. It is very necessary for beginners to master

a few approaches that can quickly perform hexadecimal

and binary conversions, string and number conversions,

large number arithmetic, Base64 encoding and decoding,

string splitting and concatenation, and so on. Therefore,

beginners can have more time to focus on the challenges.

The second coding skill is file manipulations. Beginners

often need to open files to read and analyze data in a pro-

grammable and automated way. Combined with the first

coding skill, beginners should be able to quickly write a

program or a script to process data in files. The third cod-

ing skill is network programming. In many challenges,

beginners need to connect to a service, and receive and

send data to the service. Doing this with the normal Net-

cat or Telnet program manually is slow. The services

of the challenges are usually set to time out quickly too.

Hence, beginners need to learn networking programming

to create services, make and send arbitrary packets to re-

mote servers, and process packets received from remote

servers.

Table 3: Groups of Cryptographic Algorithms

Groups Problem Cipher Top 2

Ratios Counts Ciphers

Custom 37.3% XOR

Symmetric 34.4% 36 AES, Caesar

Asymmetric 21.3% 10 RSA, ECC

Hash 5.3% 5 MD5, SHA1/2

Misc 1.7% 4 DSA, SSL

We incorporated these three skills into our exercises

where beginners have to develop these skills to solve

the challenges. We also suggest beginners to program

in Python, which is the dominant programming language

in the solutions of many competition challenges, and is

easy for beginners to learn. Beginners can quickly make

some Python scripts and run them to test solutions. There

are a lot of supporting libraries to handle networking,

web, strings, numbers, arithmetics, penetration, and var-

ious files in Python.

4.2 Cryptography

The “crypto” category includes many challenges based

on a variety of cryptographic algorithms. Table 3 sum-

marizes the cryptographic algorithms in five groups.

Among custom algorithms, XOR is the most commonly

used operation. Symmetric cryptographic algorithms ap-

peared in about a third of challenges. We identified 36

publicly known symmetric algorithms, much more than

the counts of the publicly known algorithms in the other

groups. Asymmetric cryptographic algorithms appeared

in about one fifth of challenges, but has only 10 algo-

rithms. RSA tops in the competitions among all publicly

known cryptographic algorithms. Hash algorithms ap-

peared in about 5.3% of the cryptographic challenges.

MD5 has well known collision issues and thus appeared

in more challenges than SHA1/2. The misc group in-

cludes the challenges that were designed based on cryp-

tographic tools, libraries and protocols.

Further, we examined the flaws in the “crypto” cat-

egory. We found that more than half of the “crypt”

challenges have custom cryptographic flaws where de-

signers of the challenges made their own flawed crypto-

graphic algorithms. Compared with the “pwn” and the

“web” categories, there are much fewer known flaws in

the “crypto” category. For asymmetric encryption, we

identified eight RSA flaws, such as weak public keys,

Coppersmith’s attack, Wiener’s attack and so on. For

symmetric encryption, we found AES CBC was often ex-

ploited in the competitions. For hash, we identified four

hash flaws: length extension attack, MD5/SHA reverse

lookup, MD5 collision, and PBKDF2 HMAC collision.

Other than these main cryptographic flaws, there were a

few flaws rarely used in the competitions. For example,

Table 4: Top Executable Program Types

Rank Reverse Pwn

1 X64 33.9% X64 31.7%

2 X86 28.7% X86 31.3%

3 Java 9.1% C 16.7%

4 PE32 6.3% Python 8.2%

5 Python 4.5% Bash 3.2%

6 Others 17.5% Others 8.9%

RC4’s flaw only appeared once in the writeups we exam-

ined.

To help beginners, we deployed a few cryptographic

challenges at the easy and medium levels that include the

mostly used cryptographic algorithms and flaws accord-

ing to our analysis. With these exercises, beginners will

study symmetric ciphers (Caesar, Vigenere and AES),

assymetric cipher RSA, and hash algorithms (MD5 and

SHA1). They will develop programming skills for en-

cryption and decryption as well as analytic skills for

cryptographic analysis, substitution, factorization, hash

collision and so on. To solve the challenges,they will

need to develop their own programs to exploit the flaws

in the cryptographic algorithms.

4.3 Reverse

In “reverse” challenges, flags are usually obfuscated and

embedded in executable programs. Players need to read

the programs and understand how the programs are exe-

cuted. Once completed, players find a way to retrieve the

flags from the binaries. Static analysis and dynamic anal-

ysis are mostly used to solve the “reverse” challenges.

Static analysis asks players to disassemble the binaries

to understand the programs with disassemblers (such as

Objdump and IDA Pro). Table 4 shows the top types of

executable programs. About two thirds of the “reverse”

challenges were to reverse engineer executable binaries

running in Unix and Linux computers. Hence, begin-

ners need to learn X64 and X86 assembly languages.

Beginners can also use decompilers (such as Hex-Rays

Decompiler and Hopper) that decompile binaries to C

source code, which is much easier to understand than

X64 and X86 assembly languages. Java programs are

the next most common binary type, because Java pro-

grams and Android applications are very popular in web

and mobile applications. Many online and offline tools

can decompile Java programs and Android applications

to Java source code. A beginner then needs to learn Java

language to understand the programs. Although there

are many other binary types, we think beginners should

mainly focus on the Linux executable binaries and Java

programs to establish their initial reverse engineering

skills. Hence, we deployed a few “reverse” challenges

with Linux executable binaries and Android applications

 0

 5

 10

 15

 20

 25

 30

 35

 40

fo
rm

at
 s

tr
in

g

d
at

a
o
v
er

fl
o
w

fu
n
ct

io
n
 p

o
in

te
r

o
v
er

w
ri

te

re
tu

rn
-o

ri
en

te
d
 p

ro
g
ra

m
m

in
g

st
ac

k
 o

v
er

fl
o
w

h
ea

p
 e

x
p
lo

it

in
te

g
er

 e
x
p
lo

it

sh
el

lc
o
d
e

o
th

er
s

P
ro

b
le

m
 C

o
u
n
ts

Pwn Flaws

Figure 3: Pwn Flaws

for beginners to practice their static analysis skills.

Dynamic analysis, on the other hand, asks players to

execute the binaries, trace the execution, and alter the ex-

ecution. We observed two dynamic analysis techniques

in many “reverse” challenges. One is library trace and

system call trace, where beginner need to learn how to

use “ltrace” and “strace” to trace and analyze the func-

tions being called during the execution of a binary. Once

the key functions are identified, the functions can be

overloaded with other custom functions to alter the ex-

ecution. The other technique is debugging, i.e. running

a binary in a debugger. Beginners need to learn stepping

and breaking to control the execution, and learn watch-

ing and changing variables, memory and registers to alter

the execution. Hence, we also deployed a few such chal-

lenges for beginners to practice dynamic analysis tech-

niques.

4.4 Pwn

Many “pwn” challenges provide the executable programs

that run the flawed remote services to be exploited. Play-

ers first need to reverse engineer the programs to discover

flaws and then exploit the flaws to hack into the remote

services and retrieve the flags. We can see from Table 4

that binaries that can be disassemble to X64 and X86 as-

sembly languages are still the top program types in these

challenges. When binaries are not provided, a portion

of C source code files that was used to build the remote

services are often provided to players. C and Python are

the top two coding language to build the flawed remote

services.

We found that, besides custom flaws, many “pwn”

challenges were built on some well known security flaws,

such as the software flaws and mis-configurations pub-

lished in the Common Vulnerabilities and Exposures

(CVE) database. Thereby, we examined what flaws were

often used in the “pwn” challenges. Figure 3 shows the

types of flaws in the “pwn” category. The counts of the

Table 5: Top Data Formats in Data Type Groups

Group Format Counts Top 2 Formats

image 8 png, jpg

network 5 pcap, tcpdump

audio 5 wav, mp3

disk 6 dd, ext4

archive 7 zip, tar

dump 6 memory, vbox

text 6 text, c, html

pdf 1 pdf

binary 7 x86-64, x86

video 4 mp4, mpeg

others 16 doc, log

top six flaws are not far apart. Format string is the num-

ber one flaw. Following that, we identified four different

types of overflow: data overflow, stack overflow, heap

overflow (one type of heap exploit) and integer over-

flow/underflow. Heap exploit also includes a few heap

free flaws. If we added up the challenges of all over-

flow flaws, they would be more than the challenges of

the format string flaw. Exploiting function pointers ranks

3rd. For example, overwriting GOT pointers often en-

ables players to run unintended functions. Another ex-

ploitation to run unintended code is return-oriented pro-

gramming (ROP), where a chain of ROP gadgets was

constructed to alter the execution of a flawed program.

Lastly, shellcode was often exploited in the “pwn” chal-

lenges, where players could inject shellcode or exploit

existing shell programs to open a remote shell in the tar-

get servers. The other flaws were often very specific to

some particular programs.

Accordingly, we deployed a few “pwn” exercises

based on the top three flaws: format string, data overflow

and function pointer overwriting. Beginners can practice

to obtain knowledge on these basic flaws and then be able

to learn more advanced exploit techniques later.

4.5 Forensic

The “forensic” challenges target extracting information

from various types of data files. We identified 69 unique

data formats used in the challenges and grouped them to

16 data type groups. Table 5 shows the top 10 data type

groups, including the counts of data formats and the top

2 data formats of each data type group. The top 10 data

type groups cover more than 94% of forensic challenges.

Accordingly, we deployed a few forensic challenges

of the top three data type groups. The first is image chal-

lenges, where PNG and JPG pictures are presented with

hidden flags. Beginners will learn typical techniques of

embedding data in the meta information of images, con-

catenating multiple image files, tweaking image pixels

and son on. The second is network trace challenges,

 0

 10

 20

 30

 40

 50

 60

 70

sq
l

in
je

ct
io

n

h
tt

p
 e

x
p
lo

it

cr
o
ss

-s
it

e
ex

p
lo

it

p
h
p
 e

x
p
lo

it

g
it

 e
x
p
lo

it

d
es

er
ia

li
za

ti
o
n

o
th

er
s

P
ro

b
le

m
 C

o
u
n
ts

Web Flaws

Figure 4: Web Flaws

where PCAP files are provided with hidden flags. Be-

ginners need to follow the network traffic in the traces

to find the flags. The third is multimedia challenges,

where audio and video files are presented with hidden

flags. Multiple data types are used in a few medium-

level challenges so that beginners can learn to identify

data types through some analysis.

4.6 Web

The “web” challenges require knowledge of web tech-

nologies on both server side and client side. On the

server side, beginners should familiarize themselves with

PHP language, SQL language, and MySQL database,

since many websites were setup based on the very pop-

ular web framework LAMP (Linux, Apache, Mysql and

PHP). On the client side, beginners should be proficient

with Javascript and HTML to understand how web pages

are dynamically generated and rendered on the client

side.

We examined the major flaws that were exploited in

the “web” challenges too. Figure 4 shows the types of

flaws in the “web” category. Obviously, SQL injection

is most commonly exploited. Web sites often need back-

end databases to provide data. Meanwhile, web sites of-

ten generate dynamic web pages using the data. Hence,

the web pages become an attack surface through which

malicious SQL statements can be injected into the back-

end databases to cause unintended consequences. HTTP

exploit ranks 2nd, where the flaws were often due to

misconfiguration in web sites, such as local file inclu-

sion, web robot file, relative path and so on. The third

is cross-site exploit, where players could inject cross-

site scripts and forged requests to exploit the flawed web

sites. Among web programming languages, PHP unfor-

tunately became the main target in the competitions due

to quite a few well known PHP flaws in the past. Web

applications and services developed in Python, Perl and

Ruby were far less attacked than those in PHP. GIT was

also exploited because many web developers used GIT

for version control but left GIT in the web server care-

lessly. Serialization and deserialization is a process to

pass objects in web. Some implementations of deseri-

alization were flawed and thus exploited in the compe-

titions too. All the other web flaws were not common

but could appear in web sites if the web sites were not

developed or configured properly.

Based on the writeups, we deployed a few “web” ex-

ercises that help beginners develop two necessary skill

sets. One is to proficiently use CURL and web devel-

opment tools built in most web browsers to inspect web

pages and web traffics. Beginners need to inspect and

manipulate cookies, sessions, URLs, form data, JSON

data and web agents on the client side. The other is to

exploit the top three flaws: SQL injection, http exploit,

and cross-site script exploit.

5 Lessons Learned

5.1 Class Settings

To examine the usefulness of the CTF exercises in com-

puter security education, we included the CTF exer-

cises in our undergraduate introductory computer secu-

rity class. The class has 46 students who were all be-

ginners. They studied security concepts, theories and

techniques in class. We assigned the CTF exercises as

a part of individual homework assignments, while the

other part of homework assignments are traditional text-

book questions. Half of the CTF exercises are easy ones,

and the other half are medium ones. At the end of the

class, we conducted an anonymous survey to get feed-

back from the students.

We provided partial solutions on the key steps for solv-

ing the assigned CTF exercises. The solutions were not

complete, and did not disclose the flags. The goals of the

solutions were to guide the students with example tech-

niques and to help them overcome the most challenging

steps in the exercises. The students needed to figure out

the missing steps and completed the exercises by them-

selves.

Different from some earlier studies [15, 18] where be-

ginners had great interactions with the instructors, we

minimized our intervention in this study. The main goals

of our CTF platform and exercises are to enable begin-

ners to learn and practice by themselves so that they can

obtain technical and psychological confidence by them-

selves.

5.2 Observations

Installation Issues: Some beginner students encoun-

tered several technical issues of using the platform. We

made the platform and the exercises in one VBox im-

age. Students can download the VBox image and run

it in their own computers. However, a few students are

 0

 10

 20

 30

 40

sh
o
rt

sh
o
rt

n
o
rm

al

n
o
rm

al

lo
n
g

lo
n
g

n
o
 a

tt
em

p
t

n
o
 a

tt
em

p
tP
er

ce
n
ta

g
e

(%
)

Time to Capture the Flags

easy
medium

Figure 5: Comparison of Easy and Medium Exercises

using tablet computers that do not support Virtual Box.

Another issue is that many students did not have enough

computer administration skills to install and setup the

needed tools and libraries in their own computers. In

particular, many tools and libraries are Linux oriented.

The students who use Windows and Mac OS X struggled

to get the tools installed and working. About 13% of stu-

dents gave up on the exercises due to these issues. This

new factor was not discussed in the literature that begin-

ners can be dissuaded due to the difficulty of installing

and using security tools.

Difficulty of Exercises: As discussed in Section 3.3, the

CTF challenges have different levels of difficulty. In our

study, a half of the assigned CTF exercises were at the

easy level, and the other half were at the medium level.

We asked the students to report the time they spent on

getting the flags in the survey. The results are shown in

Figure 5. “Short” means the time fewer than 15 minutes,

“medium” means the time between 15 and 40 minutes,

“long” means the time greater than 40 minutes, and “no

attempt” means the students did not work on the exer-

cises.

We can clearly observe the difference between the

easy exercises and the medium ones. More students

spent longer time on the medium ones and more students

did not attempt the medium ones. Meanwhile, more than

two thirds of students could get the flags in both types of

exercises. One third of students did not attempt because

they encountered the aforementioned technical issues or

were not very motivated to take further exercises beyond

textbook questions. The exercises are overall suitable to

most beginners, since they are challenging but solvable

to beginners.

Helpfulness of Partial Solutions: We provided the

partial solutions of the exercises and asked the students

if the solutions were helpful in the survey. The results

are shown in Figure 6. “Self” means the students got

the flags without reading the solutions, “helpful” means

the students got the flags with the help of the solutions,

 0

 10

 20

 30

 40

 50

 60

se
lf

se
lf

h
el

p
fu

l

h
el

p
fu

l

h
ar

d

h
ar

d

n
o
 a

tt
em

p
t

n
o
 a

tt
em

p
tP
er

ce
n
ta

g
e

(%
)

Opinions on the Partial Solutions

easy
medium

Figure 6: Helpfulness of Partial Solutions

“hard” means the students did not understand the solu-

tions, and “no attempt” means the students did not work

on the exercises.

As expected, only a few students (less than 8%) could

get the flags by themselves. Most students were begin-

ners and needed to read the solutions regardless the dif-

ficulty of the exercises. Because only about 10% of stu-

dents could not understand the solutions, we think the

solutions are suitable for beginners to study too. Overall,

83% of students felt the CTF exercises truly helped them

to understand computer security.

6 Conclusion and Future Works

In this paper, we analyzed the solutions of about 3600

CTF challenges from 160 security competitions in the

past three years. We identified major security issues,

skills, and techniques that are needed for beginners to

participate in the competitions. After comparing dif-

ferent options, we built a CTF platform based on Pic-

oCTF for the beginners and designed exercises in six cat-

egories: coding, cryptography, reverse engineering, pwn,

forensic and web. We provided the platform and the exer-

cises in our introductory computer security course. The

feedback from the students showed positive on the usage

of this package in the course.

The CTF exercises do not address all aspects of se-

curity education though. First, the exercises are mainly

focused on offensive techniques. Defensive techniques

and skills are missing in this study, and they are another

indispensable part of computer security. Second, the ex-

ercises do not include any practices on system admin-

istration and management, which are important to com-

puter security practice too. In future, we will explore new

approaches to involve beginners on these two aspects.

References

[1] CTF Time. https://ctftime.org/.

[2] CTF Write-ups. https://github.com/ctfs.

[3] CTFd. https://github.com/CTFd/CTFd.

[4] FbCTF. https://github.com/facebook/fbctf.

[5] OpenCTF. https://github.com/EasyCTF/OpenCTF.

[6] PicoCTF. https://github.com/picoCTF.

[7] TinyCTF. https://github.com/balidani/tinyctf-

platform.

[8] Jonathan Burket, Peter Chapman, Tim Becker,

Christopher Ganas, and David Brumley. Automatic

Problem Generation for Capture-the-Flag Compe-

titions. In Proc. of USENIX Summit on Gaming,

Games, and Gamification in Security Education,

2015.

[9] Martin Carlisle, Michael Chiaramonte, and David

Caswell. Using CTFs for an Undergraduate Cyber

Education. In Proc. of USENIX Summit on Gam-

ing, Games, and Gamification in Security Educa-

tion, 2015.

[10] Peter Chapman, Jonathan Burket, and David Brum-

ley. PicoCTF: A Game-Based Computer Security

Competition for High School Students. In Proc. of

USENIX Summit on Gaming, Games, and Gamifi-

cation in Security Education, August 2014.

[11] Tom Chothia and Chris Novakovic. An Offline

Capture The Flag-Style Virtual Machine and an As-

sessment of Its Value for Cybersecurity Education.

In Proc. USENIX Summit on Gaming, Games, and

Gamification in Security Education, 2015.

[12] Kevin Chung and Julian Cohen. Learning Obsta-

cles in the Capture The Flag Model. In Proc. of

USENIX Summit on Gaming, Games, and Gamifi-

cation in Security Education, August 2014.

[13] Adrian Dabrowski, Markus Kammerstetter, Eduard

Thamm, Edgar Weippl, and Wolfgang Kastner.

Leveraging Competitive Gamification for Sustain-

able Fun and Profit in Security Education. In Proc.

of USENIX Summit on Gaming, Games, and Gam-

ification in Security Education, 2015.

[14] Andy Davis, Tim Leek, Michael Zhivich, Kyle

Gwinnup, and William Leonard. The Fun and Fu-

ture of CTF. In Proc. of USENIX Summit on Gam-

ing, Games, and Gamification in Security Educa-

tion, August 2014.

[15] Jelena Mirkovic, Aimee Tabor, Simon Woo, and

Portia Pusey. Engaging Novices in Cybersecurity

Competitions: A Vision and Lessons Learned at

ACM Tapia 2015. In Proc. of USENIX Summit on

Gaming, Games, and Gamification in Security Ed-

ucation, 2015.

[16] Z. Cliffe Schreuders and Emlyn Butterfield. Gam-

ification for Teaching and Learning Computer Se-

curity in Higher Education. In Proc. of USENIX

Workshop on Advances in Security Education,

2016.

[17] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta,

Adam Doupé, Yanick Fratantonio, Luca Invernizzi,

Dhilung Kirat, and Yan Shoshitaishvili. Ten Years

of iCTF: The Good, The Bad, and The Ugly. In

Proc. of USENIX Summit on Gaming, Games, and

Gamification in Security Education, 2014.

[18] Jan Vykopal and Miloš Barták. On the Design

of Security Games: From Frustrating to Engaging

Learning. In Proc. of USENIX Workshop on Ad-

vances in Security Education, 2016.

